Poisson distribution Examples with Detailed Solutions
The best way to explain the formula for the Poisson distribution is to solve the following example.
Example 2
My computer crashes on average once every 4 months;
a) What is the probability that it will not crash in a period of 4 months?
b) What is the probability that it will crash once in a period of 4 months?
c) What is the probability that it will crash twice in a period of 4 months?
d) What is the probability that it will crash three times in a period of 4 months?
Solution to Example 2
a)
The average λ=1 every 4 months. Hence the probability that my computer does not crashe in a period of 4 months is written as P(X=0) and given by
P(X=0)=e−λλxx!=e−1100!=0.36787
b)
The average λ=1 every 4 months. Hence the probability that my computer crashes once in a period of 4 months is written as P(X=1) and given by
P(X=1)=e−λλxx!=e−1111!=0.36787
c)
P(X=2)=e−λλxx!=e−1122!=0.18393
d)
P(X=3)=e−λλxx!=e−1133!=0.06131
Example 3
A customer help center receives on average 3.5 calls every hour.
a) What is the probability that it will receive at most 4 calls every hour?
b) What is the probability that it will receive at least 5 calls every hour?
Solution to Example 3
a)
at most 4 calls means no calls, 1 call, 2 calls, 3 calls or 4 calls.
P(X≤4)=P(X=0orX=1orX=2orX=3orX=4)
=P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)
=e−3.53.500!+e−3.53.511!+e−3.53.522!+e−3.53.533!+e−3.53.544!+
=0.03020+0.10569+0.18496+0.21579+0.18881=0.72545
b)
At least 5 class means 5 calls or 6 calls or 7 calls or 8 calls, ... which may be written as x≥5
P(X≥5)=P(X=5orX=6orX=7orX=8...)
The above has an infinite number of terms. The probability of the complement may be used as follows
P(X≥5)=P(X=5orX=6orX=7...)=1−P(X≤4)
P(X≤4) was already computed above. Hence
P(X≥5)=1−P(X≤4)=1−0.7254=0.2746
Example 4
A person receives on average 3 e-mails per hour.
a) What is the probability that he will receive 5 e-mails over a period two hours?
a) What is the probability that he will receive more than 2 e-mails over a period two hours?
Solution to Example 4
a)
We are given the average per hour but we asked to find probabilities over a period of two hours. We therefore need to find the average λ over a period of two hours.
λ=3×2=6 e-mails over 2 hours
The probability that he will receive 5 e-mails over a period two hours is given by the Poisson probability formula
P(X=5)=e−λλxx!=e−6655!=0.16062
b)
More than 2 e-mails means 3 e-mails or 4 e-mails or 5 e-mails ....
P(X>2)=P(X=3orX=4orX=5...)
Using the complement
=1−P(X≤2)
=1−(P(X=0)+P(X=1)+P(X=2))
Substitute by formulas
=1−(e−6600!+e−6611!+e−6622!)
=1−(0.00248+0.01487+0.04462)
=0.93803
Example 5
The frequency table of the goals scored by a football player in each of his first 35 matches of the seasons is shown below.
Goals Scored , x | 0 | 1 | 2 | 3 | > 3 |
Frequency (Matches) , f | 12 | 15 | 6 | 2 | 0 |
Assuming that the goals scored may be approximated by a Poisson distribution, find the probability that the player scores
a) one goal in a given match
b) at least one goal in a given match
Solution to Example 5
a)
We first calculate the mean λ
λ=Σf⋅xΣf=12⋅0+15⋅1+6⋅2+2⋅312+15+6+2≈0.94
The probability that he will score one goal in a match is given by the Poisson probability formula
P(X=1)=e−λλxx!=e−0.940.9411!=0.36719
b)
Al least one goal means 1 or 2 or 3 or 4 .... goals
P(X≥1)=P(X=1orX=2orX=3...)
Using the complement
=1−P(X=0)
Substitute by formulas
=1−e−0.940.9400!
=1−0.39062
=0.60938
Example 6
The number of defective items returned each day, over a period of 100 days, to a shop is shown below.
Number of Defective Items, x | 0 | 1 | 2 | 3 | 4 | > 4 |
Frequency (days) , f | 50 | 20 | 15 | 10 | 5 | 0 |
Assuming that the number of defective items may be approximated by a Poisson distribution, find the probability that
a) no defective item is returned on a given day
b) three or more defective items are returned on a given day
Solution to Example 6
a)
We first calculate the mean λ
λ=Σf⋅xΣf=50⋅0+20⋅1+15⋅2+10⋅3+5⋅450+20+15+10+5=1
The probability that no defective item is returned is given by the Poisson probability formula
P(X=0)=e−λλxx!=e−1100!=0.36787
b)
At least three or more defective items are returned means 3 or 4 or 5 .... itmes or x≥3
P(X≥3)=P(X=3orX=4orX=5...)
Using the complement
=1−P(X=0orX=1orX=2)
Use the sum formula of probabilities and Poisson by formula
=1−(e−1100!+e−1111!+e−1122!)
=1−0.91969
=0.08031
More References and links
Poisson Probability Distribution Calculator
Binomial Probabilities Examples and Questions
addition rule of probabilities
multiplication rule of probabilities
probability questions
classical formula for probability
mutually exclusive events
Introduction to Probabilities
sample space
event
elementary statistics and probabilities.
Home Page
|