Completing the Square for Quadratic Expressions

This tutorial explains the method of completing the square, a fundamental technique for rewriting quadratic expressions. This form is useful for finding the vertex of a parabola, solving quadratic equations, and calculus.

The Core Formula

The method is based on the following algebraic identity:

\[ x^{2} + bx = \left(x + \frac{b}{2}\right)^{2} - \left(\frac{b}{2}\right)^{2} \]

This formula allows us to convert a quadratic expression of the form \(x^2 + bx\) into a perfect square trinomial minus a constant.

Step-by-Step Examples

Example 1: Simple Case (\(a = 1, c = 0\))

Complete the square for \(x^{2} + 4x\).

Solution:

\[ \begin{aligned} x^{2} + 4x &= \left(x + \frac{4}{2}\right)^{2} - \left(\frac{4}{2}\right)^{2} \\ &= (x + 2)^{2} - 4 \end{aligned} \]

Example 2: With a Constant Term (\(a = 1\))

Complete the square for \(x^{2} + 2x + 5\).

Solution:

\[ \begin{aligned} x^{2} + 2x + 5 &= \left(x + \frac{2}{2}\right)^{2} - \left(\frac{2}{2}\right)^{2} + 5 \\ &= (x + 1)^{2} - 1 + 5 \\ &= (x + 1)^{2} + 4 \end{aligned} \]

Example 3: Leading Coefficient > 1 (\(a > 1\))

Complete the square for \(2x^{2} - 12x\). Factor out the leading coefficient first.

Solution:

\[ \begin{aligned} 2x^{2} - 12x &= 2\left[ x^{2} - 6x \right] \\ &= 2\left[ \left(x + \frac{-6}{2}\right)^{2} - \left(\frac{-6}{2}\right)^{2} \right] \\ &= 2\left[ (x - 3)^{2} - 9 \right] \\ &= 2(x - 3)^{2} - 18 \end{aligned} \]

Example 4: Leading Coefficient = -1 (\(a = -1\))

Complete the square for \(-x^{2} - 10x\).

Solution:

\[ \begin{aligned} -x^{2} - 10x &= -\left[ x^{2} + 10x \right] \\ &= -\left[ \left(x + \frac{10}{2}\right)^{2} - \left(\frac{10}{2}\right)^{2} \right] \\ &= -\left[ (x + 5)^{2} - 25 \right] \\ &= -(x + 5)^{2} + 25 \end{aligned} \]

Example 5: Leading Coefficient < -1 (\(a < -1\))

Complete the square for \(-2x^{2} - 3x\).

Solution:

\[ \begin{aligned} -2x^{2} - 3x &= -2\left[ x^{2} + \frac{3}{2}x \right] \\ &= -2\left[ \left(x + \frac{3/2}{2}\right)^{2} - \left(\frac{3/2}{2}\right)^{2} \right] \\ &= -2\left[ \left(x + \frac{3}{4}\right)^{2} - \left(\frac{3}{4}\right)^{2} \right] \\ &= -2\left(x + \frac{3}{4}\right)^{2} + 2 \cdot \frac{9}{16} \\ &= -2\left(x + \frac{3}{4}\right)^{2} + \frac{9}{8} \end{aligned} \]

Example 6: Full Quadratic (\(a \neq 1\), with \(b\) and \(c\))

Complete the square for \(-3x^{2} + 2x + 2\).

Solution:

\[ \begin{aligned} -3x^{2} + 2x + 2 &= -3\left[ x^{2} - \frac{2}{3}x \right] + 2 \\ &= -3\left[ \left(x + \frac{-2/3}{2}\right)^{2} - \left(\frac{-2/3}{2}\right)^{2} \right] + 2 \\ &= -3\left[ \left(x - \frac{1}{3}\right)^{2} - \left(\frac{1}{3}\right)^{2} \right] + 2 \\ &= -3\left[ \left(x - \frac{1}{3}\right)^{2} - \frac{1}{9} \right] + 2 \\ &= -3\left(x - \frac{1}{3}\right)^{2} + \frac{1}{3} + 2 \\ &= -3\left(x - \frac{1}{3}\right)^{2} + \frac{7}{3} \end{aligned} \]

Practice Exercises

Complete the square for the following quadratic expressions.

  1. \(x^{2} + 4x\)
  2. \(x^{2} + 6x - 3\)
  3. \(-x^{2} - 4x + 2\)
  4. \(-2x^{2} - 5x - 5\)

Exercise Solutions

  1. \(x^{2} + 4x = (x + 2)^{2} - 4\)
  2. \(x^{2} + 6x - 3 = (x + 3)^{2} - 12\)
  3. \(-x^{2} - 4x + 2 = -(x + 2)^{2} + 6\)
  4. \(-2x^{2} - 5x - 5 = -2\left(x + \frac{5}{4}\right)^{2} - \frac{15}{8}\)

More Links and Resources on Quadratic Functions